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Theory of cumulative small-angle collisions in plasmas

K. Nanbu
Institute of Fluid Science, Tohoku University, Sendai 980-77, Japan

~Received 30 September 1996; revised manuscript received 23 December 1996!

A succession of small-angle binary collisions can be grouped into a unique binary collision with a large
scattering angle. The latter is called a cumulative collision. This makes it possible to treat the cumulative
collision like a collision between neutral molecules. A significant feature of the cumulative collision is that the
probability density function for a deflection angle depends on the time spent by a charged particle while
engaged in the cumulative collision. Here a simple analytic expression for the function is proposed which is
easy to use together with the Monte Carlo method. The validity of the present theory is ascertained by
calculating various relaxation phenomena in plasmas. The theory is best suited to particle simulation of
plasmas.@S1063-651X~97!04004-X#

PACS number~s!: 52.20.Fs, 52.65.Pp, 02.70.Lq, 52.80.2s
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I. INTRODUCTION

A recent trend in plasma-assisted materials processin
towards ‘‘low gas density and high plasma density’’ as se
in inductively coupled, electron cyclotron resonance, a
helicon sources. The Coulomb collision between char
particles plays a more important role in such plasmas and
particle or kinetic approach to plasma modeling makes m
sense than the fluid model approach. Here we propose a
ferent theory on Coulomb collision in such plasmas. T
theory is best suited to the particle simulation of dense p
mas. It can be applied to fully ionized plasma as it stan
For partially ionized plasma additional collisions should
taken into consideration. For example, argon plasma con
of four species such asA ~ground state!, A* ~metastable!, A1

~ion!, ande2 ~electron!. There are ten types of collisions. W
can treate22e2, A12A1, ande22A1 collisions by the
present theory,e22A ande22A* collisions by the theory
of Surendra, Graves, and Jellum@1#, A12A andA12A* by
the theory of Nanbu and Kitatani@2#, andA2A, A2A* , and
A*2A* collisions by the direct simulation Monte Carl
method @3,4#. Every collision is governed by short-rang
force except the Coulomb collision. Note that even if
small-angle collision dominates in some short-range co
sion, the present theory is not applicable to it.

Electrostatic forces between charged particles hav
much longer range than forces between neutral molecu
Although ‘‘encounter’’ is a more accurate word than ‘‘coll
sion’’ in such a case, here we use ‘‘collision.’’ In the Co
lomb collision, distant collisions with a small scatterin
angle are much more dominant than close collisions. T
cumulative deflection angle of a particle is correctly trea
by considering successive binary collisions with a small sc
tering angle@5,6#. Takizuka and Abe´ @7# first proposed a
binary collision model suited to a Monte Carlo particle sim
lation of plasma. Their method, which faithfully mimics
Fokker-Planck operator, has been used in the particle-in-
simulation of discharge plasma@8# and in the simulation of
ionospheric plasma@9#. There are two points that can b
improved in Takizuka and Abe´’s method. The first is that the
collision rate~or frequency! depends on the various types
relaxation such as slowing down, energy transfer, and ve
551063-651X/97/55~4!/4642~11!/$10.00
is
n
d
d
he
re
if-
e
s-
s.

ts

i-

a
s.

e
d
t-

-

ell

c-

ity deflection. Which shall we choose when some types
relaxation occur simultaneously? The second is the requ
ment that the time step should be much smaller than
relaxation time. This is necessary because in their met
small-angle collisions are calculated one by one. Howev
the use of a small time step is often computationally inte
sive. In the binary collision theory presented here, these
problems are solved; a single collision rate is introduced
any relaxation phenomenon and a succession of small-a
binary collisions are grouped into a unique binary collisi
with a large scattering angle.

Much work has been published concerning the effect
electron-electron collision on the energy distribution fun
tion of the electron, e.g., Rochwood@10#, Weng and Kushner
@11#, Hashiguchi @12#, and Yousfi, Himoudi, and Gaoua
@13#. ~See also the references cited in@13#.! The method to
treat the Coulomb collision presented in this paper is qu
different from these studies.

In Sec. II the mathematical formulation of the approach
given, a lengthy manipulation being described in the App
dix. This theory is applied to various standard problems
plasma physics in Sec. III. The numerical results show t
the theory works well for all the cases examined in this p
per.

II. THEORY

A. Cumulative scattering angle

Coulomb collisions in plasma can be treated as succes
binary collisions@5#. We consider a charged particle whic
has undergone small-angle collisionsN times in plasma.
How large is the cumulative scattering angle? Surprising
there has been no theory on this angle. We start from
simplest case; a test particle is traversing among fixed fi
particles. Extension to the case of moving field particles
done later in Sec. II D. Letg0 be the initial velocity of the
test particle, andg1,g2,...,gk,...,gN be its first, second,...,Nth
postcollision velocities. The cumulative scattering anglexN
afterN collisions is the angle betweeng0 andgN , i.e.,

cosxN5g0•gN /g
2, ~1!
4642 © 1997 The American Physical Society
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55 4643THEORY OF CUMULATIVE SMALL-ANGLE COLLISIONS . . .
whereg5ug0u. Since the kinetic energy of the test partic
does not change in collisions with fixed field particles,
gk’s are equal tog.

We introduce a Cartesian coordinate system (x,y,z)
whosez axis is directed alongg0. Let ~u1,w1! be the polar
and azimuthal angles ofg1 in the system (x,y,z). Clearly the
scattering anglex1 is equal tou1. Next we rotate thez axis
by u1 in the planey5x tanw1 so that the newz axis coincides
with g1. We label the new coordinate system (x1 ,y1 ,z1).
The z1 axis is now in the direction ofg1. We measure the
direction ~u2,w2! of g2 in the system (x1 ,y1 ,z1). The cumu-
lative scattering anglex2 is a function ofu1,u2,w1, andw2.
Rotation of the coordinate system as described above ca
repeated as many times as required. Let (uk ,wk) be the di-
rection ofgk measured in the system (xk21,yk21,zk21). We
then have

sin2
xN

2
5
1

4 (
k51

N

uk
21

1

2 (
k52

N

(
l51

k21

uku lcos~wk2w l !. ~2!

A full derivation of Eq.~2! can be found in the Appendix. I
is important, however, to mention here that this derivat
assumes thatu1,u2,...,uN!1, which is valid here because o
small-angle scattering.

Clearly, ~u1,w1!, ~u2,w2!,..., are random variables. A sta
tistical nature of successive small-angle collisions requ
that u1,u2,..., are mutually independent random variab
which obey the same probability law. In addition the s
$u1,u2,...% is independent of the set$w1,w2,...%. Since the test
particle has no preferred azimuthal direction, the ang
w1,w2,..., are uniformly distributed between 0 and 2p. We
then have

^cos~wk2w l !&5
1

~2p!2
E
0

2pE
0

2p

cos~wk2w l !dwkdw l50,

where^ & denotes the expectation. The expectation of Eq.~2!
becomes

K sin2 xN

2 L 5
1

4 (
k51

N

^uk
2&. ~3!

If we consider that~u1,w1!, ~u2,w2!,..., are not random vari
ables but their realizations, we have only to interpret^u k

2& in
Eq. ~3! as an ensemble average, i.e., an average over a
lection of many test particles. Sinceu1,u2,..., obey the same
probability law, we havêu1

2&5^u2
2&5 . . . . Then Eq.~3! re-

duces to

K sin2 xN

2 L 5
1

4
^u1

2&N. ~4!

However, the applicability of Eq.~4! is limited; asN→`, the
right-hand side tends to infinity whereas the left-hand s
should be smaller than unity. We need to add a correctio
Eq. ~4!, which is described in Sec. II B.

B. Relaxation of Šsin2„xN/2…‹

It is expected that as the collision numberN becomes
very large, the scattering is isotropic, hence the probab
density function of xN is ~sinxN!/2. We then have
l
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t
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^sin2~xN/2!&51/2. To examine the approach to this limit, an
also to find the probability density function ofxN we simu-
lated the stochastic process ofx1, x2,..., by using the proce-
dure in the Appendix. The deflection angleuk for kth small-
angle collision is given by@14#

tan
uk
2

5
uqaqbu

4pe0mg
2b
, ~5!

whereqa andqb are the charges of the test particle and fie
particle, respectively,e0 is the permittivity of free space,m is
the mass of the test particle, andb is the impact parameter
As usual, the maximal value ofb is set equal to the Debye
lengthlD @5,6#. A random sample ofb is given bylDAU, U
being a random number uniformly distributed between 0 a
1. Substitution of thisb into Eq. ~5! yields

uk52 tan21S umin
2AU D ,

whereumin~5b0/lD! is the minimal deflection angle ofgk ,
andb0 is uqaqbu/~2pe0mg

2!. The azimuthal anglewk is given
by 2pU, whereU is another random number. Once (uk ,wk)
are given, we can obtainxk , as in the Appendix. The as
sumption thatu1,u2,..., are small is not used in the simula
tion. Note thatuk→p as U→0 but most of the random
samples ofuk are very small.

In this simulation the only free parameter isumin . Usually
umin is of ordere

210~52.631023 deg!. However, to speed up
the relaxation we choose largerumin . The simulation is per-
formed for umin50.5, 1, and 2 deg. The expectation^u1

2& is
given by

^u1
2&58E

0

1F tan21S umin
2h D G2h dh, ~6!

where the unit ofumin is radian. It is 3.05131023 for umin51
deg. We have found that^sin2~xN/2!& is a unique function of
s defined by

s5 1
2 ^u1

2&N, ~7!

irrespective ofumin . This is true also for the probability den
sity function mentioned later. Therefore, we hereafter g
the results only forumin51 deg. Figure 1 showŝsin2~xN/2!&
as a function ofs. Here the ensemble average has been

FIG. 1. Relaxation of̂sin2~xN/2!&. Solid line shows Eq.~9! and
dashed line shows the simulation.
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4644 55K. NANBU
tained by the use of 200 000 test particles. The simula
data shows that relaxation of^sin2~xN/2!& can be well repre-
sented by

K sin2 xN

2 L 5
1

2
~12e2cs!, ~8!

wherec is a constant. Let us determine the constantc theo-
retically. We can say that Eq.~4! is valid at least for smalls.
The constantc is thus determined by expanding the righ
hand side of Eq.~8! for smalls and equating the result to Eq
~4!. This leads to one of the most important equations in
present theory

K sin2 xN

2 L 5
1

2
~12e2s!. ~9!

We see from Fig. 1 that Eq.~9! is a good match.

C. Probability density function of xN

Let f (xN)dV be the probability thatgN is scattered in the
solid angledV~52p sinxNdxN!. We then have

2pE
0

p

f ~xN!sinxNdxN51. ~10!

Here 2p f (xN) sinxN is the probability density function fo
xN . For isotropic scatteringf (xN) is 1/4p. Let us findf (xN).
In addition to Eq.~10! it should satisfy Eq.~9!, i.e.,

2pE
0

p

f ~xN!sin2
xN

2
sinxN dxN5

1

2
~12e2s!. ~11!

In the numerical simulation of Sec. II B, the distribution
xN is examined by counting the numberMi of xN’s in the
interval (x i21,x i), wherex i5 iDx~i51,2,...,36! andDx55
deg. The mean value off (xN) in the i th interval is given by

f i5
Mi

MV i
,

whereM ~5200 000! is the total number of test particles an
Vi@52p~cosxi212cosxi!# is the solid angle~set toxi2150
for i51!. The value off i is assigned to the weighted cent
(x i)c of the i th interval, i.e.,

~x i !c5
2p

V i
E

x i21

x i
x sinx dx,

52p~x i21cosx i212x icosx i

1sinx i2sinx i21!/V i .

The distribution of ln@f (xN)#, thus determined, is plotted i
Fig. 2 as a function of cosxN for N5100 to 3000. Note tha
the abscissa is from 1 to21. As expected,f (xN) tends to
1/4p for largeN. Based on the simulation data we introdu
the simplest approximation that ln@f (xN)# is a linear function
of cosxN for all N, i.e., f (xN)5B exp ~A cosxN!, whereA
andB are the constants. Note that ln@f (xN)# is approximately
linear for allumin’s considered in this paper. It is most pro
n

e

able that this linearity is kept for anyumin . The constantB is
given as a function ofA by use of the normalizing condition
Eq. ~10!. Now we have

f ~xN!5
A

4p sinhA
exp~A cosxN!. ~12!

Substitution of Eq.~12! into Eq. ~11! yields

cothA2A215e2s. ~13!

Once the numberN of small-angle collisions is given,s is
known. We findA by solving Eq.~13!. Then f (xN), hence
the probability density functionF(xN)@[2p f (xN)sinxN# of
xN can be obtained.

We soon see that Eq.~12! works well in various applica-
tions. Some remarks on Eqs.~12! and ~13! are given here.
We have found from some sample calculations that the val
of A should be accurate, otherwise the development of t
physical system depends on the time step employed. This
explained later. The value ofA for a givens can be easily
obtained by use of Newton’s method@15#. In applications it
is better to prepare a table ofA(s) in advance and use inter-
polation to obtain the value ofA for an arbitrarys. Table I is
a part of such a table. The interval ofs in our full table is
0.001. Beyond the tabulated values ofs we setA51/s for

FIG. 2. Probability density of deflection angle. Plots show th
simulation and solid lines show Eq.~12!.

TABLE I. Values ofA(s).

s A s A

0.01 100.5 0.3 3.845
0.02 50.50 0.4 2.987
0.03 33.84 0.5 2.448
0.04 25.50 0.6 2.067
0.05 20.50 0.7 1.779
0.06 17.17 0.8 1.551
0.07 14.79 0.9 1.363
0.08 13.01 1 1.207
0.09 11.62 2 0.4105
0.1 10.51 3 0.1496
0.2 5.516 4 0.054 96
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55 4645THEORY OF CUMULATIVE SMALL-ANGLE COLLISIONS . . .
s,0.01 andA53e2s for s.3. The error is only 0.5% for the
former and 0.15% for the latter. The value ofA is very large
for smalls, hence small values ofxN make the greatest con
tribution to f (xN). Since cosxN.12x N

2 /2, we see that for
small s the function f (xN) has a Gaussian profile with
narrow width. This is reasonable since for smalls the test
particle is hardly deviated from its original direction. F
larges, the value ofA is very small, hencef (xN).1/4p as
stated before. Thus we calls the isotropy parameter.

We have to rewrite Eq.~7! for practical applications. If
the maximal impact parameter isbmax, which is set equal to
lD , the numberN of small-angle collisions in timeDt is

N5nbgpbmax
2 Dt, ~14!

wherenb is the number density of field particles. The an
lytic approximation of̂ u1

2& defined by Eq.~6! is @14#

^u1
2&52S b0

bmax
D 2 lnL, ~15!

whereL5lD/b0 . By the use of Eqs.~14! and ~15!, Eq. ~7!
takes the form

s5nbgpb0
2 ~ lnL!Dt. ~16!

Since no restrictive condition is imposed on the magnitude
s, the choice ofDt is arbitrary. However, if we want to
examine a relaxation process of some physical systems
should be small, otherwise the system reaches the final
after only one time step.

Let us denotexN by x. In determining postcollision ve
locity we need a random sample of cosx. This can be easily
obtained fromF~x!, i.e.,

cosx5
1

A
ln~e2A12U sinhA!, ~17!

whereU is the random number. Since 0,x,p, we have
sinx5~12cos2x!1/2. The value ofA is large for smalls and
an exponential overflow occurs. To avoid this we replace
~17! by cosx511s lnU. For s.6 the scattering is almos
isotropic, so that we can replace Eq.~17! by cosx52U21.

D. Moving field particles

The speedsg0 ,g1 ,g2 ,..., of the test particle are equal i
the case of fixed field particles. However, when the fi
particles are moving, we have to consider the relative ve
ity g~5va2vb!, whereva andvb are the velocities of the tes
particle and its collision partner in the field, respective
After the first small-angle collision the initial relative veloc
ity g1~5va12vb1! is scattered byu1 and becomesg18(5va18
2vb18 ). Since we consider the elastic collision,g18 is equal to
g1. Next let us consider the second small-angle collision
the test particle. Since the collision partner is not the sa
the precollision relative velocityg2~5va22vb2! is not equal
to g18 whereva25va18 andvb2 is the velocity of the second
partner. The vectorg2 is deflected byu2 and becomes
g28(5va28 2vb28 ) after the collision. As beforeg285g2 but
g2Þg1 . Similarly, after the third collisiong3~5va32vb3! be-
comesg38(5va38 2vb38 ), whereva35va28 and vb3 is the pre-
-

f

ate

.

c-

.

f
e,

collision velocity of the third partner. Until the end of th
third collision, the relative velocity changes in the order
g1, g18 , g2, g28 , g3, and g38 . The changesg18→g2 and
g28→g3 are irrelevant to collision. Our concern is in the c
mulative deflection angle due to small-angle collisions;
disregard the changesg18→g2 ,g28→g3,..., in calculating the
deflection angle. Further repetition of this procedure sho
that Eq.~2! also holds in the case of moving field particle
However, we should note thatuk depends ongk~5uvak2vbku!
as well as the impact parameterb. See Eq.~5!, whereg is to
be replaced bygk . ~Recall thatuk depends only on the im
pact parameter in the case of fixed field particles.! Equation
~3! also holds for moving field particles. Averagingu k

2 over
b, we have for the same reasoning that led to Eq.~15!

^uk
2&52S b0

bmax
D 2 lnL. ~18!

Here b05uqaqbu/(2pe0mabg k
2) and mab5mamb/(ma

1mb), ma andmb being the masses of the test and fie
particles, respectively. The expectation^u k

2& changes from
collision to collision, so that Eq.~4! needs to be reinter
preted;^u1

2& in Eq. ~4! is actually the averagêu2& of ^u1
2&,

^u2
2&,...,̂ uN

2 &. We approximate this average simply by^u1
2&.

Then Eq.~4! holds as it stands. For a single test particle t
approximation̂ u2&.^u1

2& may be poor. However, in practi
cal simulations we consider an ensemble of test partic
The value of̂ u1

2& for each test particle is expected to fluct
ate around^u2&, so that replacinĝ u2& by ^u1

2& has little
effect on the ensemble averaged data.

Let us considerN small-angle collisions inDt. We have
from Eq. ~7!

s5
lnL

4p S qaqb

e0mab
D 2nbg

23Dt, ~19!

where g5g1 . Since lnL depends only weakly ong, we
replace it, as usual, by lnL5ln(lD/^b0&), where
^b0&5uqaqbu/(2pe0mab^g2&). The expectation̂g2& is equal
to 3kT/mab if plasma is in equilibrium at temperatureT.

Let g be the relative speed andva be the velocity of a test
particle at timet. The procedure to determine the velocity
t1Dt is summarized as follows:~1! Make a random sample
of the field particle velocityvb by the use of the field velocity
distribution function and calculateg~5va2vb!, and hences
from Eq. ~19!. ~2! DetermineA from Eq. ~13! and obtain
cosx from Eq. ~17!. ~3! The velocityva8 after a cumulative
collision is given by@16#

va85va2
mb

ma1mb
@g~12cosx!1h sinx#, ~20a!

vb85vb1
ma

ma1mb
@g~12cosx!1h sinx#, ~20b!

whereg5va2vb and the Cartesian components ofh are
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4646 55K. NANBU
hx5g'cos«,

hy52~gygxcos«1ggzsin«!/g' ,

hz52~gzgxcos«2ggysin«!/g' .

Here g'5(g y
21g z

2)1/2 and «52pU, U being a random
number. We added Eq.~20b! because in some cases the fie
particles are the collection of test particles itself. Ifmb@ma ,
the change invb82vb is of orderma/mb .

Repeating the three stages described above for all
particles and advancing time stepwise, we can determ
macroscopic properties of the ensemble at any time.

E. Multicomponent plasma

The procedure described in the preceding section can
generalized to the case when plasma consists of m
charged speciesa, b, g, . . . . It may beenough to consider a
ternary mixture ofa, b, andg. We have to considera2b,
b2g, a-g collisions between unlike species in addition
a2a, b2b, g2g collisions between like species. LetNa ,
Nb , andNg be the number of sample particles in a referen
cell. ~The sample particles are random samples taken ou
real particles.! For simplicity we setNa5Nb5Ng(5N) and
N is assumed even.

Let $va i ,vb i ,vg i ; i51,...,N% be the velocities of sample
particles at time t. New velocities $va i8 ,vb i8 ,vg i8 ; i
51,...,N% at time t1Dt can be determined by calculatin
a2b, b2g, a2g, a2a, b2b, andg2g collisions in turn.
The order of collisions is arbitrary. Let us replaceg in Eq.
~19! by g(a i ,b j )@[uva i2vb j u# ands by sab . The procedure
is as follows.

~i! MakeN pairs~va i ,vb j !: Pick up randomly a vectorvb j
one by one from allvb j ’s without replacement and set the
in array. Then the first, second,..., are the partners ofva1,
va2,... . Obtaing(a i ,b j ) and, hence,sab for each pair. De-
termineA from Eq.~13! and obtain cosx from Eq.~17!. The
postcollision velocities (va i8 ,vb j8 ) are given by Eq.~20!.

~ii ! Make N pairs ~vb i ,vg j ! and determine postcollision
velocities as in stage~i!. Note that precollision velocitiesvb i
in this stage are postcollision velocities of stage~i!.

~iii ! Make N pairs ~va i ,vg j ! and determine postcollision
velocities. In this stage, precollision velocitiesva i and vg j
are postcollision velocities in stage~i! and stage~ii !, respec-
tively. Hereafter, precollision velocities should be alwa
postcollision velocities of previous stages.

~iv! MakeN/2 pairs~va i , va j !: Set allva i ’s randomly in
array, as in the array ofvb j ’s in stage~i!. Then pick up two
by two to makeN/2 pairs. Obtaing(a i ,a j ) and, hence,saa ,
A, and cosx for each pair. The postcollision velocities a
given by Eq.~20!, where we setb5a.

~v! MakeN/2 pairs~vb i ,vb j ! and obtain postcollision ve
locities as in stage~iv!.

~vi! Obtain postcollision velocities ofN/2 pairs~vg i ,vg j !
as in stage~iv!.

We see that every particle collides three times inDt,
twice with unlike particles and once with like particles, e.
it is a2b, a2g, and a2a collisions for particlea. The
unlike collisions result in momentum and energy exchan
between two species and like collisions promote equilib
st
e

be
ny

e
of

,

e
-

tion in each species. The total number of collisions in plas
with three species is 33N133(N/2)5(S/2)3NT where
S~53! is the number of species andNT(53N) is the total
number of sample particles. The total collision number is
general given bySNT/2 when Na5Nb5Ng5•••5N. In
successful particle simulation the total collision number is
be proportional toNT . After discovery of a similar collision
algorithm for neutral gases the particle simulation of rarefi
gas flows advanced drastically@3,4#. As for how to make
collision pairs in the case ofNaÞNbÞNg ,..., see Takizuka
and Abé@7#.

III. APPLICATIONS

In the particle simulation of rarefied gas flows the flo
field is divided into small cells and molecular collisions a
treated independently in each cell@3,4#. This is reasonable
because the cell size is chosen to be nearly equal to the m
free path. Similarly, in the particle-in-cell simulation o
plasma the computational domain is divided into cells
calculate the electric and/or magnetic field@8#. Since the cell
size is of the same order as the Debye length, Coulomb
lisions can be treated independently in each cell. Wh
plasma is spatially nonuniform, we have to consider the m
tion of particles in addition to collisions. Here we apply th
theory described in the preceding section to spatially unifo
plasmas. Most of the example problems are taken from R
@6# and @7#.

A. Thermalization of electron beams in plasma

Suppose that an electron beam with speedva0 is directed
in the z direction at timet50. Here we consider only the
collisions of beam electrons with field particles. We beg
with the case of fixed field particles, i.e.,mb5` andvb50.
The expectations~or ensemble averages! ^v̂z& and^v̂'

2& in the
early stage are@5#

^v̂z&512 t̂, ~21a!

^v̂'
2 &52t̂. ~21b!

Here the symbols with a caret are nondimensional. They
obtained by dividing velocity byva0 and time byt0, where

1

t0
5

nbqa
2qb

2 lnL

8p&e0
2ma

1/2«a0
3/2
,

«a0 beingmav a0
2 /2. We haves5D t̂ from Eq. ~16!. Figure 3

shows^v̂z& and ^v̂'
2&. The simulation data are obtained fo

D t̂50.05 andNa5105. They agree well with Eqs.~21a! and
~21b! at smallt̂. Since the Maxwellian distribution holds fo
va as t̂→`, we havê v̂'

2&→2/3 ast̂→`. This is satisfied by
the simulation data. We have ascertained that the nume
solution does not depend onD t̂; the solutions forD t̂50.01,
0.1, and 1 were indistinguishable from that forD t̂50.05.

The next example is the thermalization of a beam in
electron gas. Let the energy of the electron beam,«a0 be 100
eV, with the field electrons always in equilibrium at a co
stant temperaturekTb52 eV, k being the Boltzmann con
stant. The solutions for smallt̂ are @6#
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^v̂z&5122t̂, ~22a!

^v̂'
2 &5~22hab

21! t̂, ~22b!

where hab5«a0/kTb550. In equilibrium we have
^v̂'

2&5hab
2150.02. This shows that̂v̂'

2& should be maximal a
some t̂. The isotropy parameters becomess54ĝ23D t̂,
whereĝ5uv̂a2v̂bu. The time stepD t̂ can be estimated by th
use of meanĝ in equilibrium. Our choice isD t̂50.01. Figure
4 shows the numerical results for^v̂z& and ^v̂'

2&. Agreement
with Eqs. ~22a! and ~22b! is good at smallt̂. In addition,
^v̂'

2&→0.02 for larget̂, which is the equilibrium value.
The third example is the beam thermalization in equil

rium argon plasma. Now there are two kinds of field p
ticles, field electrons~b! and ions~b8!. We set the field tem-
perature askTb52 eV andkTb850.02 eV. The small-time
solutions are@6#

^v̂z&5123t̂, ~23a!

^v̂'
2 &5~42hab

21! t̂, ~23b!

wherehab550 as before and lnL for a2b anda2b8 colli-
sions are assumed equal. The numerical solutions
D t̂50.01 are in Fig. 5. They agree well with Eqs.~23a! and
~23b!.

FIG. 3. Relaxation of̂v̂z& and^v̂'
2& in fixed field particles. Solid

lines show the simulation and dashed lines show Eq.~21!.

FIG. 4. Relaxation of̂ v̂z& and ^v̂'
2& in electron gas. Solid lines

show the simulation and dashed lines show Eq.~22!.
-
-

or

B. Relaxation of the velocity distribution function

We consider the relaxation of an electron gas due toe2e
collisions. There is no need to distinguish the test and fi
particles. The velocity distribution is assumed to be initia
an ellipsoidal one with temperaturesTxÞTy5Tz . The over-
all electron temperatureTe(5

1
3Tx1

2
3Ty) is constant since the

kinetic energy is conserved for the system. The refere
time t0 is defined by

1

t0
5

nee
4lnL

8p&e0
2me

1/2~kTe!
3/2
, ~24!

wheree is the electronic charge. The analytic solution f
DT(5Tx2Ty) is @6,7#

DT5~DT!0expS 2
8

5A2p
t̂ D ,

where (DT)0 is DT at t50 and t̂5t/t0 . The solution is
obtained based on the assumptionuDTu!Tx . We choose
Tx51.3Ty at t50 so that the assumption may be satisfi
approximately. The analytic solutions forTx/Te and Ty/Te
are shown by the dashed lines in Fig. 6. The simulat
solutions are obtained by using 106 sample electrons. The
time step isD t̂50.02. The initial velocities of electrons ar
sampled from the ellipsoidal distribution. A set of these v
locities is slightly corrected so that there may be no flow a
the temperaturesTx , Ty , Tz determined from 106 samples
may coincide with the initial temperatures. The solid lines
Fig. 6 show the simulation solutions. They agree fairly w
with the analytic solutions.

C. Relaxation of electron flow in field ions

At t50 the velocity distribution function of electron,f , is
assumed to be the Maxwellian distribution with a flow in t
x direction.

f ~v!5~2pReTe!
23/2expF2

~v2 îV!2

2ReTe
G , ~25!

whereRe5k/me , Te is the electron temperature,v is the
velocity,V is the flow velocity, andî is the unit vector in the

FIG. 5. Relaxation of̂v̂z& and^v̂'
2& in argon plasma. Solid lines

show the simulation and dashed lines show Eq.~23!.
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x direction. We setTe5T0 andV5V0 at t50. The relaxation
equation forV is obtained for smallt @7#. We extend the
equation to the case of arbitraryt. It is

dV

dt̂
52S kT0

« f
D 3/2mS « f

kTe
DV, ~26!

where« f5meV
2/2, t̂5t/t00, andm~x2! is defined by

m~x2!5erfx2
2

Ap
xe2x2.

Heret00 is t0 in Eq. ~24! for Te5T0 , ne being replaced by
ion densityni .

We compare the simulation solution with the solution
Eq. ~26!. Before starting the simulation all conditions o
which Eq. ~26! is based should be clarified. These are
follows: ~a! The velocity distribution of electron is subject t
Eq. ~25! at any time.~b! The velocity distribution of ion is
independent of time and is given by the Maxwellian dist
bution with no flow.~c! Only e2 i collisions are taken into
consideration, e2e collisions being disregarded.~d!
me/mi!1 and (mi /me)(«e/kTi)@1, wheremi is the mass of
ion, Ti is the temperature of ion, and«e is the kinetic energy
of electron. The particle simulation should be performed
such a way that all these conditions are satisfied. Note
even if f ~v! is initially Maxwellian, it is not so during relax-
ation.

Let the previously arbitrary ions be proton
(mi51836me) and setTi5T0 and « f0(5meV 0

2/2)5kT0/2.
Since the energy relaxation time fore2 i collision is much
larger than the momentum relaxation time, the mean ene
^«e& is almost constant during the relaxation of the flow v
locity V, i.e.,

^«e&5 3
2kTe1

1
2meV

25 3
2kT01

1
2meV0

2.

FIG. 6. Relaxation of temperature components. Solid lines sh
the simulation and dashed lines show the solution of the relaxa
equation.
f

s
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This equation is used to eliminateTe in Eq. ~26!. The dashed
line in Fig. 7 is the solution of Eq.~26! obtained by the use
of the Runge-Kutta-Gill method. Note that the second par
condition ~d! is well satisfied for«e5^«e&.

Initial velocities of electrons are sampled from Eq.~25!
for Te5T0 andV5V0 . The ion velocities are also sample
from the Maxwellian distribution forTi5T0 . Let Ne andNi
be the numbers of sample electrons and ions. Our choic
Ne5Ni5105. SinceNe is finite, the flow velocity and tem-
perature determined from the set of sample velocities sho
slight deviation from the given values. The sample velocit
are corrected so as to make the deviation null. A sim
correction is also done for the ion velocities. As for ions, t
initial set of velocities are used at any time. The isotro
parameters of Eq. ~16! takes the form

s5S me

mei
D 2ĝ23D t̂,

wheremei is the reduced mass andĝ is the relative speed
between an electron and ion pair, made dimensionless
dividing by (2kT0/me)

1/2. The time stepD t̂ is 0.04. The
collision pair is determined by the method described in S
II E. The velocity distribution of electrons at the end of tim
step t̂5D t̂ does not have the form of Eq.~25!. To satisfy
condition ~a! we first determineV andTe from a set of ve-
locities at t̂5D t̂ and then replace the set by a new set
velocities sampled from Eq.~25!. A slight correction is done
for the new set in the same way as was done for the in
set. These procedures are repeated at the end of each
step. The solid line in Fig. 7 showsV/V0 obtained from the
simulation. Agreement with the solution of Eq.~26! is good.

D. Equilibration of electron and ion temperatures

Let Te andTi be the electron temperature and ion te
perature, respectively. Suppose thatTeÞTi at t50. Equili-

w
n

FIG. 7. Relaxation of flow velocity. Solid line shows the sim
lation and dashed line shows the solution of Eq.~26!.
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bration of temperatures is described by the relaxation eq
tion for DT(5Te2Ti) @5,6#. In the case ofne5ni energy
conservation requires

Te1Ti5Te01Ti052T` ,

whereTe0 andTi0 are the initial temperatures andT` is the
final equilibrium temperature. The relaxation equation
based on the assumption that the electrons and the ion
ways have Maxwellian distributions with different temper
turesTe andTi . This should be incorporated in the partic
simulation. To increase the relaxation rate we consider
ion with imaginary mass such asmi54me . The initial con-
dition is Te052Ti0. The dashed lines in Fig. 8 showTe/T`

andTi /T` obtained from the relaxation equation. Thee2 i
collisions are simulated by the present method. The isotr
parameters is

s5ĝ23D t̂,

whereĝ5g/v ref , v ref5(kT`/mei)
1/2, D t̂5Dt/tref, and

1

t ref
5

nee
4lnL

4pe0
2mei

1/2~kT`!3/2
.

In this problem the energies of both electrons and ions sh
relaxation owing toe2 i collisions. Equation~19! shows that
s is symmetrical with respect to exchange ofa andb. This
symmetry should be kept when we nondimensionalizeg and
Dt in s. We see thatv ref andtref satisfy this condition. The
simulation is performed forD t̂50.25 andNe5Ni5105. Ini-
tial velocities of electrons and ions are sampled from M
wellian distributions with temperaturesTe0 and Ti0. These
velocities are slightly corrected so that there may exist
flow and sample averages may yield the givenTe0 andTi0
exactly. The temperaturesTe andTi at t̂5D t̂ are obtained
from the velocities of electrons and ions. By use of the
temperatures new velocities att̂5D t̂ are sampled from Max-

FIG. 8. Equilibration of electron and ion temperatures. So
lines show the simulation, dashed lines show the solution of
relaxation equation, and dashed-dotted lines show simulatio
which the condition of temporal Maxwellian distribution is n
used.
a-

s
al-

n
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e

wellian distributions withTe and Ti and are corrected a
before. The solid lines in Fig. 8 indicate the simulation s
lution. It shows a fairly good agreement with the solution
the relaxation equation. The dashed-dotted lines are the
sults obtained by assuming Maxwellian distributions on
t50. We see that in fact the velocity distributions are n
Maxwellian during the relaxation process.

E. Drift velocity of electrons in an oscillating electric field

In the previous examples there are no external forc
Here we consider the case when plasma is in an oscilla
electric field. Time is advanced step by step as before.
have to consider both acceleration and collision of partic
in each time step. This is treated separately; first accelera
is calculated and then collision is taken into account. W
consider the plasma in a typical fusion condition. It consi
of electrons and deuterons. The number densities and
peratures arene5ni51021/m3 and kTe5kTi51 keV. Ini-
tially the plasma is in equilibrium. The Debye lengthlD for
electron is 7.431026 m. The impact parameter^b0& for e2e
and e2 i collisions is the same and is given b
e2/(6pe0kTe), hence lnL515.9. The isotropy parameters
for e2e ande2 i collisions can be obtained from Eq.~19!.
Ions are insensitive to the electric field. We suppose that
ions always have a Maxwellian velocity distribution with th
initial temperature; thus acceleration of ions andi2 i colli-
sions are disregarded. An oscillating electric fieldE cosvt
in the x direction is switched on att50. If there is no colli-
sion, the drift velocitŷ v& of electrons in thex direction is

^v&5^v0&2
eE

mev
sinvt,

wherev0 is the initial velocity of electron and̂v0&.0. Since
the time average of̂v& over a period is almost zero, w
consider the time average of^v&2, i.e.,

^v&25^v0&
21 1

2V
2. 1

2V
2 ~27!

whereV5eE/mev. Here we examine the effect ofe2e and
e2 i collisions on^v&2. We fixV atV5A8kTe /pme for any
E andv.

The time step is determined as follows. Fore2e colli-
sions Eq. ~19! gives s;23106Dt, where we used
g23;^g3&215(Ap/32!(me/kTe)

3/2. Our choice is
Dt52.531027 s, for which s;0.5. The simulation is per-
formed for 0,t,50tp , where tp(5 f2152p/v) is the pe-
riod. The frequencyf is varied from 1 kHz to 1 MHz. A
period is divided intoJ time steps, e.g.,J5400 for f510
kHz. The time point t j in the nth cycle is
t j5(n21)tp1( j21)Dt ( j51,2,...,J). Let (v i) j be the ve-
locity of i th electron at timet j . This is changed by the elec
tric field to

v i~ t !5~v i ! j2V~sinvt2sinvt j !,

wheret j,t,t j11. The ensemble average is

^v~ t !&5^v& j2V~sinvt2sinvt j !.

Next we obtain

e
in
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I j5E
t j

t j11

^v~ t !&2dt.

After this we calculate alle2e collisions and subsequentl
all e2 i collisions. Similarly,I j11 is obtained by the use o
the postcollision velocity (v i) j11. The time average for the
nth cycle is given by

^v&25~ I 11I 21•••1I J!/tp .

Figure 9 showŝv&2/V2 as a function of cyclen. The num-
bers of samples areNe5Ni5105. At f51 MHz the Coulomb
collisions have no effect on the drift velocity whereas t
drift disappears atf51 kHz owing to the Coulomb colli-
sions. We can see relaxation in the case off5100 kHz, 10
kHz, 5 kHz, and 2 kHz. The steady state values of^v&2 for
f510 kHz, 5 kHz, and 2 kHz appear to be smaller than t
of Eq. ~27!.

IV. CONCLUSION

The treatment of Coulomb collisions in plasmas has b
greatly simplified by grouping a succession of small-an
binary collisions into a unique binary collision with a larg
scattering angle. The main results are expressed in ana
forms.
~1! The procedure to determine the velocity of a particle
the end of a time stepDt is as follows.

~i! First the isotropys is calculated at the beginning o
time step:

s5nbgpb0
2~ lnL!Dt,

whereb0[5uqaqbu/(2pe0mabg
2)] is the impact parameter

~ii ! For a givens we determine the constantA from the
equation

cothA2A215e2s.

FIG. 9. Relaxation of square of electron drift velocity in a
oscillating electric field.
t

n
e

tic

t

~iii ! The probabilityf (x)dV that the postcollision relative
velocity is scattered in solid angledV~52p sinxdx! is given
by

f ~x!dV5
A

4p sinhA
eA cosxdV.

~2! We have applied this theory to various situations occ
ring in plasmas. In particular:

~i! Thermalization of electron beams in fields consisti
of fixed field particles, an electron gas, and a nonequilibri
argon plasma.

~ii ! Relaxation of electron gas due toe2e collisions.
~iii ! Relaxation of electron flow in field ions.
~iv! Equilibration of electron and ion temperatures.
~v! The drift velocity of electrons in an oscillating electr

field.
The theory developed in this paper enabled us to rep

duce analytical results for~i! to ~iv! previously obtained by
other authors with a high degree of accuracy.

~3! Clearly, development of a theory of cumulative col
sion has the potential for application in many fields involvi
plasma physics and plasma processing. By its very natu
enables the results of many small-angle collisions to be
culated extremely efficiently reducing computational cost

ACKNOWLEDGMENTS

Calculations are carried out by the use of the SX-3R at
Computer Center of Tohoku University. The present work
supported by the Japan Atomic Energy Research Insti
~Kansai Research Establishment! as a part of Advanced La
ser System Research.

APPENDIX: CUMULATIVE SCATTERING ANGLE

We consider the rotation of the Cartesian coordinate s
tem. See Fig. 10. When thez axis is turned byu1 in thezOx8
plane, the new set of fundamental vectors in the Cartes
system is

ei
~1!5Ai j

~1!ej
~0! , ~A1!

where we used the repeated-subscript notation for sum
tion. The matrixA i j

(1) is an abbreviation of

FIG. 10. Coordinate system rotation.
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A~u1 ,w1!5F cosu1cos
2w11sin2w1 ~cosu121!sinw1cosw1 2sinu1cosw1

~cosu121!sinw1cosw1 cosu1sin
2w11cos2w1 2sinu1sinw1

sinu1cosw1 sinu1sinw1 cosu1
G .
m
-

E

i
s

o
-
l

iv

-

ion

t

Equation~A1! can be obtained as follows. First the syste
Oxyz is rotated byw1 around thez axis. The resulting sys
temOx8y8z8 is rotated byu1 around they8 axis to yield the
systemOx9y9z9. Thez9 axis is in the direction ofe3

~1! . When
the systemOx9y9z9 is rotated by2w1 around thez9 axis, we
have the system whose fundamental vectors are given by
~A1!. If we regarde3

~0! asg0/g ande3
~1! asg1/g, thenu1~5x1!

is the scattering angle. Similarly we turne3
~1! and make

e3
~2!~5g2/g! whose polar and azimuthal angles measured
thee1

~1!e2
~1!e3

~1! system areu2 andw2. The fundamental vector
are now

ei
~2!5Ai j

~2!ej
~1! , ~A2!

where the matrixA~2! denotesA~u2,w2!. Substitution of Eq.
~A1! into Eq. ~A2! yields

ei
~2!5Bi j

~2!ej
~0! , ~A3!

whereB(2)5A(2)A(1). Onceu1,w1 and u2,w2 are given, the
matrix B~2! is known. Clearly,B31

~2! , B32
~2! , andB33

~2! are the
components ofe3

~2! in thee1
~0!e2

~0!e3
~0! system. The polar angle

x2 and azimuthal anglec2 of e3
~2! can be obtained from

sinx2cosc25B31
~2! , ~A4a!

sinx2sinc25B32
~2! , ~A4b!

cosx25B33
~2! . ~A4c!

If we usex2 andc2, we can rewrite Eq.~A3! as

ei
~2!5@A~x2 ,c2!# i jej

~0! . ~A5!

The anglex2 is the cumulative scattering angle due to tw
collisions. The anglex3 after the third collision can be ob
tained as follows. Letu3 andw3 be the polar and azimutha
angles ofe3

~3!~5g3/g! in thee1
~2!e2

~2!e3
~2! system, i.e.,

ei
~3!5Ai j

~3!ej
~2!5Bi j

~3!ej
~0! , ~A6!

whereB(3)5A(3)A(x2 ,c2), and Eq.~A5! is used. Now we
can obtain the polar anglex3 and azimuthal anglec3 of e3

~3!

from Eq. ~A4! wherex2, c2, andB
~2! are to be replaced by

x3, c3, andB
~3!. Repetition of this procedure givesx4,x5,... .

This procedure is used in Sec. II B in calculating cumulat
scattering anglexN .

An analytic expression ofxN can be derived ifu1,u2,...,
are small. Our concern ise3

(n), so that we introduce the sim
pler notations as
q.

n

e

ĝn~5gn /g![e3
~n! ,

Gi
~n![A3i

~n!5~sinuncoswn ,sinunsinwn ,cosun!.

The extension of Eqs.~A2! and ~A3! is

ei
~n!5Ai j

~n!ej
~n21! , ~n51,2,...!. ~A7!

We have from this equation

ĝn5Gi
~n!ei

~n21! ,

5Gi
~n!@A~n21!A~n22!...A~1!# i jej

~0! . ~A8!

The cumulative scattering anglexn is given by

cosxn5e3
~0!
•ĝn

5Gi
~n!@A~n21!A~n22!...A~1!# i3 . ~A9!

If O(u n
3) and higher orders are disregarded in the express

of A(n)@5A(un ,wn!#, we have

A~n!5I1unC
~n!2 1

2un
2D ~n!, ~A10!

whereI is the unit matrix and

C~n!5S 0
0
jn

0
0
hn

2jn
2hn

0
D ,

D ~n!5S jn
2

jnhn

0

jnhn

hn
2

0

0
0
1
D ,

with jn5coswn andhn5sinwn . From Eq.~A10! we obtain

A~n21!A~n22!...A~1!5I1 (
k51

n21

ukC
~k!2

1

2 (
k51

n21

uk
2D ~k!

1 (
k52

n21

(
l51

k21

uku lC
~k!C~ l !. ~A11!

On the other hand, for smallun we have

Gi
~n!5~unjn ,unhn,12 1

2un
2!. ~A12!

Substitution of Eqs.~A11! and~A12! into Eq.~A9! and some
manipulation yields Eq.~2! in the text. Note that the firs
order terms disappear.
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